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Abstract

In this study, differential quadrature (DQ) vibration analysis of a rotating thin walled-blade made of functionally graded

materials (FGMs) operating under high temperature supersonic gas flow is investigated. The governing equations are

based on the first-order shear deformation theory of beams which include the effects of the rotary inertias and the blade

presetting angle. Quasi-steady aerodynamic pressure loadings and steady wall temperature assumptions are made. The

explicit DQ-discretized form of the equations of motion and the related boundary conditions are presented. The

convergence of the method is examined and to verify its accuracy, the results are compared with those of the Galerkin

method where excellent agreements are observed. The effects of the Mach number, rotating speed, geometric parameters

and blade material properties on the natural frequencies are examined.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Advanced rotating turbomachinery blades operate at high speed and temperature gas flow environment. In
the future rocket engine applications, such as the Reusable Launch Vehicle (RLV), the Fastrac supersonic
ones, their turbine blades are going to be exposed to a supersonic flow field [1,2].

The dynamic response characteristics of rotating blades can be dramatically affected by the high
temperatures in which the blades should operate [3–6]. Moreover, as a result of the high speed airflow, static
and dynamic instabilities can occur. Therefore, the ability to predict the aerothermoelastic behavior of such
structural components becomes of great practical importance.

Functionally graded materials (FGMs), for high temperature structural applications, are microscopically
inhomogeneous special composites, whose thermo-mechanical properties vary smoothly and continuously in
predetermined directions throughout the body of the structure. This feature is achieved by gradually varying
the volume fraction of constituent materials, which are usually made of ceramics and metals.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a blade width
aij stiffness quantities
Aij first-order weighting coefficients
b blade height
bk mass quantities
Bij second-order weighting coefficients
CN sound speed
E Young’s modulus
G aerodynamic damping matrix
h wall thickness
i unit vector along the x-axis
j unit vector along the y-axis
k unit vector along the z-axis
k volume fraction parameter
K thermal conductivity
L blade length
M mass matrix
MN Mach number
Mx, My moments about the x and y axes
px, py distributed force in x- and y-direction
Qx, Qy shear forces in the x- and y-directions
R position vector of an arbitrary point of

the blade
Rf steady temperature recovery factor
R0 Hub radius
s, n local surface coordinates (tangential,

normal to mid-surface)
S stiffness matrix
Sbd, Sdb, Sdd boundary–domain interaction stiff-

ness matrix, domain–boundary interac-
tion stiffness matrix, domain stiffness
matrix, respectively

TN air flow temperature
Tz axial force in the z direction
u, v, w displacement components in x, y, z

coordinate
u0, v0 displacement components in x and y

direction

U0, V0 amplitude of displacement components
in x and y direction

Ub, Ud boundary and domain degrees of free-
dom vectors, respectively

Ut
xp ;Ut

yp tangential components of fluid velocity
on the positive xp and yp planes

UN air flow velocity
x, y, z blade coordinate
xP, yP, zP principle coordinate
a thermal expansion coefficient
b, b0 pretwist angle of an arbitrary cross

section and tip cross section, respectively
g setting angle
dT, dV, dWe variation of kinetic and potential

energy and virtual work of external force,
respectively

Dpxp ; Dpyp x and y aerodynamic loading on the
positive xp and yp planes

DT steady-state temperature raise
eij strain tensor components
yx, yy rotation about x and y axes, respectively
Yx, Yy amplitude of rotation about x and y axis,

respectively
k air polytropic ratio
ks transverse shear correction factor
n Poisson’s ratio
x CNrN
r material mass density
rN air flow density
sij stress tensor components
oi natural frequency
ōi non-dimensional imaginary part of nat-

ural frequency ðoIiL
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b1=a33

p
Þ

O rotating speed
Ō non-dimensional angular velocity of the

shaft OðL2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b1=a33

p
Þ

ð:_Þ; ð:Þ0 d=dtð:Þ; d=dzð:Þ
ð Þ

i; ð Þi;z ð Þjz¼zi
; dð Þ=dzjz¼zi
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In addition to the research work developed based on the theory of elasticity for the analysis of FGM beams
and plates [7–10], the classical beam theory has also been used to study the behavior of thin-walled structures
made of FGMs [3–5,11].

The research work related to the modeling and behavior of rotating blades made of FGMs and operating at
high temperature environment, to the best of the authors’ knowledge, have been limited to those of Librescu
and his co-workers [3–5]. In the previous studies of rotating FGMs thin-walled blades at high temperature
environment, aerothermoelastic loading has not been considered. More recently, Fazelzadeh and Hosseini [11]
have investigated aerothermoelastic behavior of the rotating FGMs thin-walled blade under supersonic flow.
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In all these works, the Galerkin method was used to solve the governing equations. In addition to the intrinsic
complexities involving the modeling of these structures, another intervening issue is the solution of their
variable-coefficient governing equations in a simple and computationally efficient manner.

Differential quadrature method (DQM), as an efficient alternative numerical tool for structural analysis,
was prompted by Bert et al. [12] in 1988. Applying the method to such problems, it was concluded that DQM
procedures offer comparable accuracy with less computational effort in comparison with those of
Rayleigh–Ritz method, Galerkin method, finite difference and finite element method (FEM) [12,13]. The
method has been widely used for static and free vibration analysis of beams and plates [14–18]. A review of the
early developments in DQM can be found in Bert and Malik [13].

In the present work, the applicability of DQM as an efficient numerical method for vibration analysis of
rotating thin walled-beam blade made of FGMs under the aerothermoelastic loading is demonstrated. The
governing equations are based on the first-order shear deformation beam theory which includes the effects of
the presetting angle and the rotary inertia. The effects of steady wall temperature and quasi-steady
aerodynamic pressure loadings due to flow motion are also included. Due to aerothermoelastic terms in
loading, the damping effects are generated in the equations of motion. The DQ discretized form of the
governing equations and the related boundary conditions at the domain and boundary grid points are
obtained. The accuracy and convergence behavior of the method of solution is demonstrated and the results
are compared with those of the Galerkin method [11].
2. Blade geometrical descriptions

Consider a straight and pretwisted flexible blade of length L mounted on a rigid hub of radius R0, which
rotates at constant speed O about an axis normal to the longitudinal axis of the blade, as shown in Fig. 1. The
blade is allowed to vibrate flexurally in a plane making an angle g, referred to as the setting angle, with the
plane of rotation. In Fig. 1, the coordinate variables of centroidal rotating coordinate system are denoted by x,
y and z with its origin located at the blade root. Moreover, the principal coordinate system along the principle
axes of an arbitrary blade cross section is chosen with its coordinate variables defined as xp, yp and zp. The two
coordinate system are related via the following transformation

xðs; zÞ ¼ xpðsÞ cosðbðzÞ þ gÞ � ypðsÞ sinðbðzÞ þ gÞ,

yðs; zÞ ¼ xpðsÞ sinðbðzÞ þ gÞ þ ypðsÞ cosðbðzÞ þ gÞ; z sð Þ ¼ zp, ð1Þ

where b(z) ¼ b0z/L denotes the pretwist angle of a current beam cross section. It is also appropriate to define
the beam surface coordinates system (s, z, n) where s and n are the circumferential and thickness coordinate
variables, respectively (see Fig. 1).
3. The basic formulations

Assuming an isotropic material, the corresponding thermoelastic constitutive law, adopted to the case of
thin-walled structures, is expressed as

sss

szz

szn

sns

ssz

2
6666664

3
7777775
¼

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q44 0

0 0 0 0 Q66

2
6666664

3
7777775

�ss

�zz

�zn

�ns

�sz

2
6666664

3
7777775
�

âDT

âDT

0

0

0

2
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, (2)

where

Q11 ¼
E

1� n2
; Q12 ¼

En
1� n2

; Q66 ¼
E

2ð1þ nÞ
; Q44 ¼ Q55 ¼ k2

s

E

2ð1þ nÞ
; â ¼

E

1� n
a.
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Fig. 1. Geometry of the rotating blades: (a) pretwisted thin-walled blade, and (b) blade cross section.
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For a model of ceramic/metal FGM, the material properties vary continuously across the blade thickness
according to [19]

PMðnÞ ¼ ðPMc � PMmÞ V m þ PMm; V c ¼ 1� Vm. (3)

Herein the subscripts m and c identify quantities associated with the metal and ceramic, respectively. PM in Eq.
(3) is material properties corresponding to modulus of elasticity, Poisson’s ratio, density, thermal expansion
coefficient and thermal conductivity. For the case of a uniform blade thickness, Vm can be expressed as

V m ¼
2nþ h

2h

� �k

, (4)

where k ð0pkp1Þ is the volume fraction parameter. This shows that the material properties vary continuously
from fully ceramic at the top surface of the blade to fully metal at the bottom surface.

Based on the experimental observations [5], it is known that the properties of FGM are temperature-
dependent and this can be generally expressed as

PðnÞ ¼ P0ðP�1=T þ 1þ P1T þ P2T
2 þ P3T3Þ, (5)

where P0, P�1, P1, P2, P3 are thermal property constants and T (in K) is the environmental temperature. For
constitutes considered in this paper, namely silicon nitride (SN) and stainless steel (SS), the constants Pi are
supplied in Refs. [5,20].

A steady-state one-dimensional temperature distribution through the thickness is assumed for the blade,
which is governed by the following differential equation and boundary conditions

d

dn
KðnÞ

dT

dn

� �
¼ 0; T n ¼ �

h

2

� �
¼ Tm; T n ¼

h

2

� �
¼ Tc. (6)



ARTICLE IN PRESS
S.A. Fazelzadeh et al. / Journal of Sound and Vibration 306 (2007) 333–348 337
It is assumed that the blade is exposed to supersonic gas flow. Therefore, the temperature difference can be
expressed as [21],

DT ¼ Tc � T1 ¼ Rf ½ðk� 1Þ=2�M2
1T1, (7)

where Tc is the blade wall temperature.
The first-order piston theory is used to evaluate the perturbed gas pressure. Hence, the pressure on the

principal planes of the blade become

DPyp ¼ C1r1
qvp

qt
þUt

yp

qvp

qz

� �
; DPxp ¼ C1r1

qup

qt
þUt

xp

qup

qz

� �
, (8)

where

Ut
xp ¼ U1 cosðbþ gÞ; Ut

yp ¼ U1 sinðbþ gÞ. (9)

Herein, CN, rN, UN are the speed of sound, the free stream air density and velocity; Ut
xp and Ut

yp are the
tangential components of the fluid velocity on the positive xp and yp planes, respectively. Also, up and vp are
displacement components along the principal axes xp and yp, which are related to the displacement
components in x–y coordinate system as

up ¼ u0 cosðbþ gÞ þ v0 sinðbþ gÞ; vp ¼ �u0 sinðbþ gÞ þ v0 cosðbþ gÞ. (10)

Using Eq. (8), the external loads per unit axial length distributed in the x- and y-directions can be obtained,
respectively, as

px ¼ aDPyp sinðbþ gÞ � bDPxp cosðbþ gÞ; py ¼ �aDPyp cosðbþ gÞ � bDPxp sinðbþ gÞ. (11)

The governing equations and boundary conditions can be derived via the extended Hamiltonian’s principle,Z t2

t1

ðdT � dV þ dW eÞdt ¼ 0. (12)

In the above equation, the variation of kinetic energy is given by

dT ¼

Z L

o

ðr _R:d _RÞdz (13)

in which,

_R ¼ ½ _uþ ðR0 þ zþ wÞO�iþ _vjþ ½ _w� ðxþ uÞO�k.

Also, the variation of strain energy based on the first-order shear deformation theory of beams can be
written as

dV ¼ �

Z L

0

fðM 0
y �QxÞdyy þ ðM

0
x �QyÞdyx þ ½Q

0
x þ ðTzu00Þ

0
�du0 þ ½Q

0
y þ ðTzv

0
0Þ
0
�dv0gdz

þ ½Mydyy þMxdyx þ ðQx þ Tzu00Þdu0 þ ðQy þ Tzv00Þdv0�
��L
0
, ð14Þ

dWe is the virtual work of non-conservative external forces, which in this study becomes

dW e ¼

Z L

0

ðpxdu0 þ pydv0Þdz. (15)

Substituting Eqs. (13)–(15) into Eq. (12) and using the integration by part method, the equations of motion
and the related boundary conditions can be obtained as

Governing equations:

du0 : ½a44ðzÞðu
0
0 þ yyÞ þ a45ðzÞðv

0
0 þ yxÞ�

0 � b1 €u0 þ b1u0O2 þ O2½RðzÞu00�
0 þ px ¼ 0, (16)

dv0 : ½a55ðzÞðv
0
0 þ yxÞ þ a45ðzÞðu

0
0 þ yyÞ�

0 � b1 €v0 þ O2½RðzÞv00�
0 þ py ¼ 0, (17)
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dyy : ½a22ðzÞy
0
y þ a23ðzÞy

0
x�
0 � a44ðzÞðu

0
0 þ yyÞ � a45ðzÞðv

0
0 þ yxÞ

� ðb5ðzÞ þ b15ðzÞÞð€yy � O2yyÞ � ðb6ðzÞ � b13ðzÞÞð€yx � O2yxÞ ¼ 0 ð18Þ

dyx : ½a33ðzÞy
0
x þ a32ðzÞy

0
y�
0 � a55ðzÞðv

0
0 þ yxÞ � a54ðzÞðu

0
0 þ yyÞ

� ðb4ðzÞ þ b14ðzÞÞð€yx � O2yxÞ � ðb6ðzÞ � b13ðzÞÞð€yy � O2yyÞ ¼ 0, ð19Þ

where the stiffness quantities aij ¼ aji are given in Ref. [5].
Boundary conditions:

At z ¼ 0 : u0 ¼ v0 ¼ yy ¼ yx ¼ 0. (20)

At z ¼ L : du0 : a44ðu
0
0 þ yyÞ þ a45ðv

0
0 þ yxÞ ¼ 0, (21)

dv0 : a55ðv
0
0 þ yxÞ þ a54ðu

0
0 þ yyÞ ¼ 0, (22)

dyy : a22y
0
y þ a23y

0
x ¼ 0, (23)

dyx : a33y
0
x þ a32y

0
y ¼ 0. (24)

The solution of the above equations of motion may be assumed as follows:

u0ðz; tÞ ¼ U0ðzÞe
ot; v0ðz; tÞ ¼ V 0ðzÞe

ot; yxðz; tÞ ¼ YxðzÞe
ot; yyðz; tÞ ¼ YyðzÞe

ot. (25)

4. DQ discretized form of the governing equations

To establish the eigenvalue problem formulations, the spatial derivatives of the equations of motion and the
related boundary conditions are discretized by using DQ discretization rules. A review of differential
quadrature method (DQM) is given in Appendix A.

Using the DQ discretization rules for the spatial derivatives and Eq. (25), the DQ analogs of the governing
differential equations become,

Eq. (16):

ai
44;z

XN

j¼1

AijU
j
0 þYi

y

 !
þ ai

44

XN

j¼1

BijU
j
0 þ

XN

j¼1

AijYj
y

 !
þ ai

45;z

XN

j¼1

AijV
j
0 þYi

x

 !

þ ai
45

XN

j¼1

BijV
j
0 þ

XN

j¼1

AijYj
x

 !
� b1o2Ui

0 þ b1O2Ui
0 þ O2Ri

;z

XN

j¼1

AijU
j
0

 !
þ O2Ri

XN

j¼1

BijU
j
0

 !

þ axU1ðS
i
bgÞ

2
�Si

bg

XN

j¼1

AijU
j
0 þ Ci

bg

XN

j¼1

AijV
j
0 �

Ui
0

L
b0Ci

bg �
Vi

0

L
b0Si

bg

 !

� bxU1ðC
i
bgÞ

2 Ci
bg

XN

j¼1

AijU
j
0 þ Si

bg

XN

j¼1

AijV
j
0 �

U
j
0

L
b0S

i
bg þ

V i
0

L
b0C

i
bg

 !

þ aoxSi
bgð�Ui

0Si
bg þ Vi

0Ci
bgÞ � boxCi

bgðU
i
0C

i
bg þ Vi

0Si
bgÞ ¼ 0, ð26Þ

Eq. (17):

ai
55;z

XN

j¼1

AijV
j
0 þYi

x

 !
þ ai

55

XN

j¼1

BijV
j
0 þ

XN

j¼1

AijYj
x

 !
þ ai

45;z

XN

j¼1

AijU
j
0 þYi

y

 !

þ ai
45

XN

j¼1

BijU
j
0 þ

XN

j¼1

AijYj
y

 !
� b1o2Vi

0 þ O2Ri
;z

XN

j¼1

AijV
j
0

 !
þ O2Ri

XN

j¼1

BijV
j
0

 !
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� axU1Ci
bgS

i
bg �Si

bg

XN

j¼1

AijU
j
0 þ Ci

bg

XN

j¼1

AijV
j
0 �

Ui
0

L
b0C

i
bg �

V i
0

L
b0S

i
bg

 !

� bxU1Ci
bgS

i
bg Ci

bg

XN

j¼1

AijU
j
0 þ Si

bg

XN

j¼1

AijV
j
0 �

Ui
0

L
b0Si

bg þ
Vi

0

L
b0Ci

bg

 !

� aoCi
bgxð�Ui

0Si
bg þ Vi

0Ci
bgÞ � boSi

bgxðU
i
0C

i
bg þ V i

0S
i
bgÞ ¼ 0, ð27Þ

Eq. (18):

ai
22;z

XN

j¼1

AijYj
y

 !
þ ai

22

XN

j¼1

BijYj
y

 !
þ ai

23;z

XN

j¼1

AijYj
x

 !
þ ai

23

XN

j¼1

BijYj
x

 !
� ai

44

XN

j¼1

AijU
j
0 þYi

y

 !

� ai
45

XN

j¼1

AijV
j
0 þYi

x

 !
þ ðbi

5 þ bi
15ÞY

i
yO

2 þ ðbi
6 � bi

13ÞY
i
xO

2 � o2ðbi
5 þ bi

15ÞY
i
y

� o2ðbi
6 � bi

13ÞY
i
x ¼ 0, ð28Þ

Eq. (19):

ai
33;z

XN

j¼1

AijYj
x

 !
þ ai

33

XN

j¼1

BijYj
x

 !
þ ai

32;z

XN

j¼1

AijYj
y

 !
þ ai

32

XN

j¼1

BijYj
y

 !
� ai

55

XN

j¼1

AijV
j
0 þYi

x

 !

� ai
54

XN

j¼1

AijU
j
0 þYi

y

 !
þ ðbi

4 þ bi
14ÞY

i
xO

2 þ ðbi
6 � bi

13ÞY
i
yO

2 � o2ðbi
4 þ bi

14ÞY
i
x

� o2ðbi
6 � bi

13ÞY
i
y ¼ 0. ð29Þ

In a similar manner to those of the equations of motion, the DQ analogs of the boundary conditions can be
obtained as

Eq. (20):

Ui
0 ¼ V i

0 ¼ Yi
y ¼ Yi

x ¼ 0 for i ¼ 1, (30)
Table 1

Convergence of the first three natural frequencies at various pretwist angles for full ceramic material (g ¼ 0, k ¼ 0, MN ¼ 4)

Pretwist angle b0 (deg.) Natural frequencies ðōiÞ Number of grid points (N)

7 11 13 19

0 1 5.7654 5.7587 5.7588 5.7588

2 8.5756 8.5731 8.5731 8.5731

3 21.8834 21.9968 21.9971 21.9969

15 1 5.7675 5.7575 5.7578 5.7575

2 8.5541 8.5513 8.5515 8.5515

3 21.9678 22.0616 22.0618 22.0617

30 1 5.7726 5.7539 5.7547 5.7539

2 8.4894 8.4883 8.4886 8.4883

3 22.2215 22.2531 22.2531 22.2532

45 1 5.7778 5.7482 5.7490 5.7488

2 8.3838 8.3896 8.3891 8.3895

3 22.6441 22.5625 22.5625 22.5626

60 1 5.7804 5.7407 5.7410 5.7408

2 8.2440 8.2631 8.2630 8.2631

3 23.2325 22.9768 23.0100 23.0100
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Eq. (21):

ai
44

XN

j¼1

AijU
j
0 þYi

y

 !
þ ai

45

XN

j¼1

AijV
j
0 þYi

x

 !
¼ 0 for i ¼ N, (31)

Eq. (22):

ai
55

XN

j¼1

AijV
j
0 þYi

x

 !
þ ai

45

XN

j¼1

AijU
j
0 þYi

y

 !
¼ 0 for i ¼ N, (32)
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Fig. 2. (a)–(c) Variation of natural frequencies vs. rotating speed (b0 451, g ¼ 0, k ¼ 0): Liberscu et al. [5]; present.
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Eq. (23):

ai
22

XN

j¼1

AijYj
y

 !
þ ai

23

XN

j¼1

AijYj
x

 !
¼ 0 for i ¼ N, (33)

Eq. (24):

ai
33

XN

j¼1

AijYj
x

 !
þ ai

23

XN

j¼1

AijYj
y

 !
¼ 0 for i ¼ N. (34)

At the next stage, to setup the eigenvalue system of equations, the degrees of freedom (dof) are separated
into domain and boundary dof as

Ud ¼ ½U0 V 0 Yy Yx �Td ; Ub ¼ ½U0 V0 Yy Yx �Tb (35)

where the subscripts d and b refer to the domain and the boundary, respectively. Rearranging the discretized
equations of motion, the assembled matrix form of the governing equation becomes

SdbUb þ SddUd þ o2MUd þ oGUd ¼ 0. (36)

Also, the DQ discretized form of the boundary conditions in matrix form becomes

SbbUb þ SbdUd ¼ 0. (37)
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Fig. 3. (a,b) Variation of natural frequencies vs. rotating speed (MN ¼ 4, b0 451, g ¼ 0, k ¼ 0): Galerkin [11]; Present.
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In Eqs. (36) and (37), the elements of the coefficient matrixes are obtained based on the definitions of
domain and boundary dof vectors. Using Eq. (37) to eliminate Ub from Eq. (36), one has

SUd þ o2MUd þ oGUd ¼ 0, (38)
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Fig. 4. (a,b). Variation of natural frequencies vs. rotating speed ((MN ¼ 4, b0 451, g ¼ 0, k ¼ 50): Galerkin [11]; Present.
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Fig. 5. Variation of natural frequencies vs. pretwist angle (MN ¼ 4, Ō ¼ 3, g ¼ 0, k ¼ 0): Galerkin [11]; present.
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where

S ¼ Sdd � SdbS
�1
bb Sbd ¼ 0.

The above equation can be solved to find the natural frequencies as well as the mode shapes. To transform
this eigenvalue problem into a standard eigenvalue problem, a new set of dof is defined as

X ¼
U

oU

� 	
. (39)

Using Eq. (39), Eq. (38) can be written as

~A X ¼ oX. (40)

where the matrix ~A is

~A ¼
0 I

�M�1S M�1G

� �
. (41)

Herein the matrixes I and 0 are the identity and the null matrix, of order (4N�8)� (4N�8), respectively.
Solving Eq. (41), one obtains the eigenvalues as well as the eigenvectors.
5. Numerical results

At this stage, the convergence and accuracy of the method is verified and the effects of different parameters
on the natural frequencies are studied. The thin-walled blade has a uniform rectangular cross section with the
following geometric characteristics [5]:

R0 ¼ 1:3m; L ¼ 1:52m; a ¼ 0:257m; b ¼ 0:0827m; h ¼ 0:01654m:

Also, the following assumptions are made:

k ¼ 1:4; T1 ¼ 300K; C1 ¼ 340:5m=s; r1 ¼ 1:1614 kg=m3.

In general, the system is non-conservative therefore the stiffness matrix [S] is non-symmetric. The numerical
solution leads to o ¼ oR+ioI, in which oR is a very small value in comparison with oI and therefore
eot ffi eioI t. At such a critical state, the imaginary part (o) corresponds to the natural frequency or the flutter
frequency of the system.

Firstly, the convergence behavior of the method is investigated by obtaining the first three natural
frequencies for different set of pretwist angle (b0). In Table 1, the results for different number of grid points at
Mach number equal to 4 with zero setting angle are presented. Converged results up to four significant digits
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Fig. 6. Variation of natural frequencies vs. pretwist angle (MN ¼ 4, Ō ¼ 3, g ¼ 0, k ¼ 50): Galerkin [11]; present.
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are obtained using thirty grid points (N ¼ 13). One notes that seven grid points (N ¼ 7) is sufficient to obtain
results with acceptable accuracy.

Figs. 2–8 are constructed to show the effects of four main system parameters: pretwisting angle (b0), the
Mach number (MN), rotating speed (O) and material characteristic (k) on the variation of natural frequencies.
Wherever possible the obtained results are compared to those of the Galerkin method [11], which are obtained
using sixth-order polynomials.
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Fig. 7. (a–c) Variation of natural frequencies vs. Mach number for different values of dimensionless rotating speed (b0 ¼ 451, g ¼ 0,

k ¼ 0): ~X ¼ 0; ~X ¼ 0:2; ~X ¼ 0:5; ~X ¼ 1:0.
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In Figs. 2(a)–(c), variations of the first three dimensionless natural frequencies against the dimensionless
rotating speed for full ceramic constitution at zero Mach number are shown. It is obvious that the DQM
results are in close agreement with those of the Galerkin method obtained by Librescu et al. [5].

In Figs. 3(a)–(b), the DQ results for the first two dimensionless natural frequencies are compared with those
of the Galerkin method for full ceramic constitution at nonzero Mach number (MN ¼ 4). In Figs. 4(a)–(b),
the previous characteristics are considered for full metal constitution. In all cases, the relative error between
the two methods is less than 1%.
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Table 2

Comparisons of CPU time required for calculation of the first three natural frequencies using the DQ and the Galerkin methods

ðbo ¼ 15�; g ¼ 0; k ¼ 0; M1 ¼ 4Þ

DQ Method Galerkin Method

Number of grid points (N) ōi CPU time (s)a Polynomial orderb ōi CPU time (s)

5 5.89912 0.417 1 6.58380 6.610

8.53321 10.68061

20.80278 –

7 5.76757 0.426 2 5.87017 18.142

8.55403 8.66783

21.96762 32.32992

9 5.75797 0.446 4 5.81798 76.984

8.55147 8.58289

22.06454 22.90850

11 5.75755 0.448 6 5.80719 207.510

8.55134 8.57695

22.06172 22.63645

13 5.75754 0.459 8 5.80675 463.101

8.55134 8.57661

22.06181 22.63043

aComputer: Intel-Celeron-CPU (1.7GHz).
bOrder of polynomial used for displacement components u0 and v0.
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In Figs. 5 and 6, the influence of pretwist angle for the full ceramic constitution and full metal
constitution on the fundamental dimensionless natural frequency with a nonzero Mach number (MN ¼ 4) is
investigated, respectively. Again good agreements between the DQ and the Galerkin method results are
observed.

In Figs. 7(a)–(c), the influences of the rotating speed on the first three dimensionless natural frequencies for
fully ceramic constitution are presented.

The effects of the variation of the volume fraction parameter k on the first three dimensionless natural
frequencies obtained by DQ and the Galerkin method are shown in Figs. 8(a)–(c).

Comparisons of CPU time required for both the DQ and the Galerkin methods are presented in Table 2.
One can see that with much less CPU time, the DQ method yields the converged results. It is interesting to
note that the fundamental frequency obtained via the DQM is slightly less than that of the Galerkin method,
which predicts the upper bond of the fundamental frequency.

6. Conclusion

The applicability of DQM for vibration analysis of aerothermoelastic thin-walled blades made of
FGMs was investigated. The governing equations include the different complexity effects due to the
rotation of the blade and the high temperature supersonic gas flow loading. The transverse shear defor-
mation and rotary inertia were considered. The effects of different geometrical parameters and
material properties on the convergence and accuracy of the method were investigated using different
number of grid points. The results were compared with those of the Galerkin method. Accurate results
were obtained using only few grid points, which showed the low computational expense of the method.
It is concluded that DQM can be used as an efficient numerical tool for aerothermoelastic problems
of structures made of functionally graded materials. Also, the damping matrix appeared in the
equation of motions showed that the DQM can be used for damped vibration analysis of FGMs
structures.
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Appendix A. Review of differential quadrature method

The method of differential quadrature is based on the idea that the partial derivatives of a field variable at
the ith discrete point in the computational domain is approximated by a weighted linear sum of the values of
the field variable along the line passing through that point which is parallel with the coordinate direction of the
derivative [12]. For a one-dimensional field variable u(x), the mth-order derivative with respect to x can be
approximated as

dmu

dxm

����
ðxi ;yiÞ

¼
XNx

k¼1

Ā
ðmÞ

ik uðxkÞ ¼
XNx

k¼1

Ā
ðmÞ

ik uk. (A.1)

The accuracy of the differential quadrature method is depending on two factors: the first one is the accuracy
of weighting coefficients while the second one is the sampling point selection. There are several ways to obtain
the weighting coefficients, such as solving Vandermonde system of equations, etc. However, a more accurate
method is developed by Shu and Richards [22]. These useful formulas are taken from Shu and Richards [22] by
assuming x as the dimensionless coordinate variable as

Ā
ð1Þ

ij ¼
MðxiÞ

ðxi � xjÞMðxjÞ
for iaj,

Ā
ð1Þ

ij ¼ �
XNx

j¼1;jai

Ā
ð1Þ

ij for i ¼ j, ðA:2Þ

where

MðxÞ ¼
YNx

j¼1;iaj

ðxi � xjÞ.

For the second and higher derivatives the weighting coefficients can be evaluated, using the following
recurrence relation as

Ā
ðrÞ

ij ¼ r Ā
ðr�1Þ

ij Ā
ð1Þ

ij �
Ā
ðr�1Þ

ij

ðxi � xjÞ

" #
for i; j ¼ 1; 2; . . . ;Nx; iaj and 2prpNx � 1 (A.3)

and

Ā
ðrÞ

ii ¼ �
XNx

j¼1;iaj

Ā
ðrÞ

ij for i ¼ 1; 2; . . . ;Nx and 1prpNx � 1. (A.4)

The simplest way for determining the sampling points is to choose the equally spaced grid points in
coordinate direction. But more accurate results can be achieved by using unequally spaced division [12]. It can
be as follows:

xi ¼
1

2
1� cos

ði � 1Þp
ðNx � 1Þ

� �� 	
; i ¼ 1; 2; :::;Nx. (A.5)
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